Debian and a LocalStack - Setting Up a Local AWS S3 Environment for Development
[image: David Garcia] David Garcia
Introduction
These days, it’s very common for Software Engineers to create applications that require access to third-party services. Examples of such third-party services include APIs, databases, and cloud-based applications. Many applications and companies operate and deploy their services on Amazon Web Services (AWS). Additionally, one of the first and most renowned services offered by AWS is Simple Storage Service (S3).
Press enter or click to view image in full size
[image: A person sitting at a table with a computer and cookies

AI-generated content may be incorrect.]
When Docker entered the realm of development, setting up a local database for development became extremely easy. You could create a docker-compose.yml file where you had both the database and your service defined. This allowed for relatively simple end-to-end testing of certain services locally.
But what about other third-party services? Do I have to create mocks in my tests? Furthermore, in the case of certain services like S3, operations (both read and write) incur a cost. Would I have to pay every time I want to perform an end-to-end test?
Each type of third-party service has its way of being simulated. In this case, I’m here to explain how we can simulate S3 locally, enabling us to carry out all the operations that S3 allows without needing to access the AWS cloud.
LocalStack
LocalStack is a powerful tool used in software development for creating local environments that replicate various AWS cloud services. It allows developers to emulate the behavior of AWS services, such as S3 (Simple Storage Service), SQS (Simple Queue Service), SNS (Simple Notification Service), DynamoDB (NoSQL database), and many others, on their local machines.
Essentially, LocalStack provides a local sandbox environment that mimics the AWS cloud infrastructure, enabling developers to test their applications locally without incurring any costs associated with using the actual AWS services. This is particularly useful for development and testing purposes, as it allows developers to experiment with AWS services, develop and debug their applications, and run end-to-end tests without relying on the internet or incurring expenses.
Moreover, this tool comes neatly packaged in a Docker image, ready to be configured in our typical docker-compose.yml file.
In this article, we won’t delve deeply into all the options and what can or cannot be done, as LocalStack has very good documentation on its website.
Example
In this section, we’re going to perform an exercise as generic and simple as possible. For this reason, we’ll create a playground environment with the following requirements:
· We’ll have two containers: a Debian and a LocalStack.
· When we start the playground environment (docker compose up -d), the S3 bucket named ‘david-garcia-medium’ must exist.
· From the Debian container, using AWS CLI, I should be able to perform operations with S3 as if it were the actual AWS itself.
First of all, let’s display the file structure of our repository.
./
 playground/
 aws/
 config
 credentials
 aws_cli/
 awscliv2-amd64.zip
 awscliv2-arm64.zip
 localstack/
 s3.sh
 .env.debian
 .env.localstack
 docker-compose.yml
 Dockerfile
In the ‘playground’ directory, we have the necessary configuration to make our playground environment work. In this case, we have three subdirectories:
· aws: which contains the authentication configuration required by AWS CLI to access AWS.
· aws_cli: where we have the downloaded AWS CLI binaries — in this case, we’ve downloaded both the AMD (for Linux in general) and ARM (for Mac with M1 in general) versions.
· localstack: with a script, which will be used to configure the startup of the LocalStack container.
The .env.debian and .env.localstack files are files with declared environment variables that will be mounted to the containers in the docker-compose.yml. They contain the following information
.env.debian
AWS cli configuration
AWS_PROFILE=localstack
The .env.debian is very simple, and only contains the AWS environment variable used by AWS CLI to know what profile must be used by default. If we review the files available in playground/aws path we find the following
config
[profile localstack]
output = json
endpoint_url = http://localstack:4566
region = us-east-1
credentials
[localstack]
aws_access_key_id=test
aws_secret_access_key=test
In the playground/aws/config file, we overwrite the endpoint_url to use our LocalStack as AWS backend instead of the official AWS. In the playground/aws/credentials we configure the credentials to the localstack profile.
Let’s review the .env.localstack
.env.localstack

SERVICES=s3

Checker
TRIES=30

Base
HOSTNAME_EXTERNAL=localstack

LOCALSTACK_API=http://localstack:4566
LOCALSTACK_HEALTH_ENDPOINT=http://localstack:4566/health

S3
BUCKET_NAMES=david-garcia-medium

AWS cli configuration
AWS_DEFAULT_PROFILE=localstack
These environment variables are typically utilized by the script located at playground/localstack/s3.sh. This script serves as a fundamental tool that executes once the LocalStack container is up and running, facilitating the creation of the pre-existing S3 bucket that we require. This script will be mounted in the path /etc/localstack/initi/ready.d and the localstack container will execute when it is ready. More info here
Let’s review the docker image with debian, the Dockerfile
FROM docker.io/debian:bookworm-slim

Added TARGETARCH to differenciate between amd64 (Linux and Windows) and arm64 (Mac) when install awscliv2.zip
ARG TARGETARCH

Install zip
RUN apt update && \
 apt install -y zip=3.0-13 && \
 rm -rf /var/lib/apt/lists/*

Install awscli
COPY playground/aws_cli/awscliv2-${TARGETARCH}.zip .
RUN unzip awscliv2-${TARGETARCH}.zip && \
 ./aws/install && \
 rm -rf awscliv2-${TARGETARCH}.zip aws

By default, this container does not execute anything; it simply sleeps indefinitely.
CMD ["tail", "-f", "/dev/null"]
In this scenario, the image is quite straightforward, with the only sophisticated aspect being our readiness to build the image for both amd64 and arm64 architectures, utilizing the TARGETARCH Docker ARG. We use the binaries stored in playground/aws_cli instead of downloading them via curl in the Dockerfile to ensure consistent installation of the same version of AWS CLI. This practice guarantees that each time we rebuild the image, we maintain uniformity in the awscli version.
And finally, we see the docker-compose.yml file with the definition of the services before running a test and verifying that everything works.
version: '3.7'

services:
 debian:
 build:
 context: .
 dockerfile: Dockerfile
 depends_on:
 - localstack
 env_file:
 - .env.debian
 volumes:
 - ./playground/aws:/root/.aws:ro

 localstack:
 image: docker.io/localstack/localstack:3.1
 ports:
 - "4566:4566"
 env_file:
 - .env.localstack
 volumes:
 - ./playground/localstack:/etc/localstack/init/ready.d/:ro
 - ./playground/aws:/root/.aws:ro
As you can see, there’s nothing unfamiliar here that we haven’t commented on previously. Let’s test it:
$ docker compose down -v && docker compose up -d && docker compose exec debian bash
...
root@9698486ac759:/# # List the aws s3 buckets availables
root@9698486ac759:/# aws s3 ls
2024-04-02 17:57:15 david-garcia-medium
root@9698486ac759:/# # Create a file and upload to S3
root@9698486ac759:/# echo "hello medium" > my_file.txt
root@9698486ac759:/# aws s3 cp my_file.txt s3://david-garcia-medium
upload: ./my_file.txt to s3://david-garcia-medium/my_file.txt
root@9698486ac759:/# aws s3 ls s3://david-garcia-medium
2024-04-02 18:02:06 13 my_file.txt
root@9698486ac759:/# # Create a new S3 bucket
root@9698486ac759:/# aws s3 mb "s3://my-new-bucket"
make_bucket: my-new-bucket
root@9698486ac759:/# aws s3 ls
2024-04-02 17:57:15 david-garcia-medium
2024-04-02 18:04:20 my-new-bucket
root@9698486ac759:/# # you can test other commands!
Extra example
Furthermore, LocalStack provides the files we have uploaded to S3 at the following path: http://localhost:4566/<bucket-name>, and you can download them using the S3 key.
$ curl http://localhost:4566/david-garcia-medium
<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <IsTruncated>false</IsTruncated>
 <Marker/>
 <Name>david-garcia-medium</Name>
 <Prefix/>
 <MaxKeys>1000</MaxKeys>
 <Contents>
 <Key>my_file.txt</Key>
 <ETag>"5047cdd6613d55aa1a3143639a81cf78"</ETag>
 <Owner>
 <DisplayName>webfile</DisplayName>
 <ID>75aa57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
 </Owner>
 <Size>13</Size>
 <LastModified>2024-04-02T18:02:06.000Z</LastModified>
 <StorageClass>STANDARD</StorageClass>
 </Contents>
</ListBucketResult>

$ curl http://localhost:4566/david-garcia-medium/my_file.txt
hello medium
To conclude, you have all the code available in the following GitHub repository.

image1.jpeg

image2.jpeg
dar) . Sopt)
- (0wioan, 8 . o)
9
’ ”W’ {Aomen B hdte))
b gruTeCles i) L

wooutal) g5

B o, o, e

st cate o
al b = % it oy
hatan At cotke o L L mkr gon QUGN
3

ercroles thr RN
e v ittt
-

